- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Xie, Jason (2)
-
Chen, Xu (1)
-
Hu, Xiaogang (1)
-
Jiang, Tianyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xie, Jason; Hu, Xiaogang (, 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC))Improving prosthetic hand functionality is critical in reducing abandonment rates and improving the amputeeās quality of life. Techniques such as joint force estimation and gesture recognition using myoelectric signals could enable more realistic control of the prosthetic hand. To accelerate the translation of these advanced control strategies from lab to clinic, We created a virtual prosthetic control environment that enables rich user interactions and dexterity evaluation. The virtual environment is made of two parts, namely the Unity scene for rendering and user interaction, and a Python back-end to support accurate physics simulation and communication with control algorithms. By utilizing the built-in tracking capabilities of a virtual reality headset, the user can visualize and manipulate a virtual hand without additional motion tracking setups. In the virtual environment, we demonstrate actuation of the prosthetic hand through decoded EMG signal streaming, hand tracking, and the use of a VR controller. By providing a flexible platform to investigate different control modalities, we believe that our virtual environment will allow for faster experimentation and further progress in clinical translation.more » « less
An official website of the United States government
